Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 588: 216802, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467180

RESUMO

Multiple myeloma (MM) is a hematological malignancy that remains incurable, primarily due to the high likelihood of relapse or development of resistance to current treatments. To explore and discover new medications capable of overcoming drug resistance in MM, we conducted cell viability inhibition screens of 1504 FDA-approved drugs. Lomitapide, a cholesterol-lowering agent, was found to exhibit effective inhibition on bortezomib-resistant MM cells in vitro and in vivo. Our data also indicated that lomitapide decreases the permeability of the mitochondrial outer membrane and induces mitochondrial dysfunction in MM cells. Next, lomitapide treatment upregulated DRP1 and PINK1 expression levels, coupled with the mitochondrial translocation of Parkin, leading to MM cell mitophagy. Excessive mitophagy caused mitochondrial damage and dysfunction induced by lomitapide. Meanwhile, PARP14 was identified as a direct target of lomitapide by SPR-HPLC-MS, and we showed that DRP1-induced mitophagy was crucial in the anti-MM activity mediated by PARP14. Furthermore, PARP14 is overexpressed in MM patients, implying that it is a novel therapeutic target in MM. Collectively, our results demonstrate that DRP1-mediated mitophagy induced by PARP14 may be the cause for mitochondrial dysfunction and damage in response to lomitapide treatment.


Assuntos
Benzimidazóis , Doenças Mitocondriais , Mieloma Múltiplo , Humanos , Mitofagia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mitocôndrias/metabolismo , Recidiva Local de Neoplasia/patologia , Resistência a Medicamentos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
2.
Int J Biol Sci ; 19(15): 4948-4966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781520

RESUMO

A high recurrence rate of non-Hodgkin's lymphoma (NHL) following chimeric antigen receptor T (CAR T) cell treatment remains a bottleneck, and immunosuppressive tumor microenvironment (TME) compromising CAR T cell efficacy in NHL is the primary cause of relapse. Accordingly, modifying the structure of CAR T cells to attenuate the inhibitory effect of TME thus reducing recurrence rate is a valuable research topic. CD47 has been proved to be a promising therapeutic target and is crucial in regulating macrophage function. Herein, we engineered CD19-CAR T cells to secrete an anti-CD47 single-chain variable fragment (scFv) and validated their function in enhancing antitumor efficacy, regulating T cells differentiation, modifying phagocytosis and polarization of macrophages by in vitro and in vivo researches. The efficacy was analogous or preferable to the combination of CAR T cells and CD47 antibody. Of note, anti-CD47 scFv secreting CAR T cells exert a more potent immune response following specific antigen stimulation compared with parental CAR T cells, characterized by more efficient degranulation and cytokine production with polyfunctionality. Furthermore, locally delivering anti-CD47 by CAR T cells potentially limits toxicities relevant to systemic antibody treatment. Collectively, our research provides a more effective and safer CAR T cell transformation method for enhancing tumor immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Antígeno CD47 , Linfócitos T , Imunoterapia/métodos , Receptores de Antígenos Quiméricos/genética , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Microambiente Tumoral
3.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902569

RESUMO

In recent years, numerous researchers have made local chemical modifications to the structure of curcumin while its basic structure remains unchanged, thus, producing curcumin derivatives. In this article, tetrahydrocurcumin was obtained by hydrogenation of curcumin, DFT calculation and characterization at the theoretical level of B3LYP/6 -311++G(d,p) were carried out. The observed IR and Raman spectra are in good agreement with the theoretical spectra. The FMO and ESP of tetrahydrocurcumin are predicted. The interaction in the system is shown graphically and analyzed by IGMH. Compared with curcumin, tetrahydrocurcumin lacks the unsaturated C = C bond, which makes it more stable and more bioavailable. Molecular docking with antioxidant targets elucidated the ligand-protein interaction and molecular dynamics simulation showed the antioxidant activity of tetrahydrocurcumin. The antioxidant activity of tetrahydrocurcumin was proved by DPPH• and •OH radical scavenging experiments. In essence, these derivatives exhibit enhanced physiological activity in certain aspects compared to the original curcumin. Moreover, the computational pharmacology techniques lay a theoretical groundwork for the development and modification of high-efficiency, low-toxicity drugs that interface with various targets of curcumin in the future.Communicated by Ramaswamy H. Sarma.

4.
Oncogene ; 42(50): 3657-3669, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872214

RESUMO

Conventional therapies for acute myeloid leukemia (AML) often fail to eliminate the disease-initiating leukemia stem cell (LSC) population, leading to disease relapse. Interferon-γ (IFN-γ) is a known inflammatory cytokine that promotes antitumor responses. Here, we found that low serum IFN-γ levels correlated with a higher percentage of LSCs and greater relapse incidence in AML patients. Furthermore, IFNGR1 was overexpressed in relapsed patients with AML and associated with a poor prognosis. We showed that high doses (5-10 µg/day) of IFN-γ exerted an anti-AML effect, while low doses (0.01-0.05 µg/day) of IFN-γ accelerated AML development and supported LSC self-renewal in patient-derived AML-LSCs and in an LSC-enriched MLL-AF9-driven mouse model. Importantly, targeting the IFN-γ receptor IFNGR1 by using lentiviral shRNAs or neutralizing antibodies induced AML differentiation and delayed leukemogenesis in vitro and in mice. Overall, we uncovered essential roles for IFN-γ and IFNGR1 in AML stemness and showed that targeting IFNGR1 is a strategy to decrease stemness and increase differentiation in relapsed AML patients.


Assuntos
Interferon gama , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Interferon gama/farmacologia , Leucemia Mieloide Aguda/patologia , Carcinogênese/patologia , Células-Tronco Neoplásicas/patologia , Recidiva
5.
Cell Death Dis ; 14(8): 498, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542030

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disorder with a dismal prognosis. The dysregulation of histone acetylation is of great significance in the pathogenesis and progression of B-ALL. Regarded as a fundamental acetyltransferase gene, the role of HBO1 (lysine acetyltransferase 7/KAT7) in B-ALL has not been investigated. Herein, we found that HBO1 expression was elevated in human B-ALL cells and associated with poor disease-free survival. Strikingly, HBO1 knockdown inhibited viability, proliferation, and G1-S cycle progression in B-ALL cells, while provoking apoptosis. In contrast, ectopic overexpression of HBO1 enhanced cell viability and proliferation but inhibited apoptotic activation. The results of in vivo experiments also certificated the inhibitory effect of HBO1 knockdown on tumor growth. Mechanistically, HBO1 acetylated histone H3K14, H4K8, and H4K12, followed by upregulating CTNNB1 expression, resulting in activation of the Wnt/ß-catenin signaling pathway. Moreover, a novel small molecule inhibitor of HBO1, WM-3835, potently inhibited the progression of B-ALL. Our data identified HBO1 as an efficacious regulator of CTNNB1 with therapeutic potential in B-ALL.


Assuntos
Histonas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Acetilação , beta Catenina/genética , beta Catenina/metabolismo , Carcinogênese , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Via de Sinalização Wnt/genética
7.
Ann Hematol ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548690

RESUMO

N6-methyladenosine (m6A) RNA modification has recently emerged as an essential regulator of normal and malignant hematopoiesis. As a reversible epigenetic modification found in messenger RNAs and non-coding RNAs, m6A affects the fate of the modified RNA molecules. It is essential in most vital bioprocesses, contributing to cancer development. Here, we review the up-to-date knowledge of the pathological functions and underlying molecular mechanism of m6A modifications in normal hematopoiesis, leukemia pathogenesis, and drug response/resistance. At last, we discuss the critical role of m6A in immune response, the therapeutic potential of targeting m6A regulators, and the possible combination therapy for AML.

8.
Hematol Oncol ; 41(5): 933-941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37259483

RESUMO

Cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS) and neutropenia are common toxicities associated with chimeric antigen receptor T (CAR-T) cell therapy. The role of granulocyte colony stimulating factor (G-CSF) in CAR-T-cell-treated patients remains unclear. To explore the efficacy and safety of early G-CSF administration in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL) who were receiving autologous anti-CD19 CAR-T cells, we retrospectively collected and summarized clinical data to compare patients receiving G-CSF within 14 days (early G-CSF group) to patients receiving later or no G-CSF (control group) after their CART infusion. The results showed that there was no significant difference in the incidence and duration of neutropenia between the early G-CSF group and the control group (77% vs. 63%, p = 0.65; 8 vs. 4 days, p = 0.37, respectively). However, the incidence and duration of CRS were significantly higher in the early G-CSF group than in the control group (81% vs. 38%, p = 0.03; 3 vs. 0 days, p = 0.004, respectively). Moreover, early G-CSF application had no significant effect on the expansion and efficacy of CAR-T cells. In conclusion, our study suggested that early G-CSF administration did not reduce the incidence and duration of neutropenia but rather increased the incidence and duration of CRS.


Assuntos
Neutropenia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/uso terapêutico , Síndrome da Liberação de Citocina/etiologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos
9.
Br J Haematol ; 201(5): 940-953, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36916190

RESUMO

Self-renewal and differentiation arrest are two features of leukaemia stem cells (LSCs) responsible for the high relapse rate of acute myeloid leukaemia (AML). To screen drugs to overcome differentiation blockade for AML, we conducted screening of 2040 small molecules from a library of United States Food and Drug Administration-approved drugs and found that the cyclin-dependent kinase (CDK)4/6 inhibitor, abemaciclib, exerts high anti-leukaemic activity. Abemaciclib significantly suppressed proliferation and promoted the differentiation of LSCs in vitro. Abemaciclib also efficiently induced differentiation and impaired self-renewal of LSCs, thus reducing the leukaemic cell burden and improving survival in various preclinical animal models, including patient-derived xenografts. Importantly, abemaciclib strongly enhanced anti-tumour effects in combination with venetoclax, a B-cell lymphoma 2 (Bcl-2) inhibitor. This treatment combination led to a marked decrease in LSC-enriched populations and resulted in a synergistic anti-leukaemic effect. Target screening revealed that in addition to CDK4/6, abemaciclib bound to and inhibited CDK9, consequently attenuating the protein levels of global p-Ser2 RNA Polymerase II (Pol II) carboxy terminal domain (CTD), Myc, Bcl-2, and myeloid cell leukaemia-1 (Mcl-1), which was important for the anti-AML effect of abemaciclib. Collectively, these data provide a strong rationale for the clinical evaluation of abemaciclib to induce LSC differentiation and treat highly aggressive AML as well as other advanced haematological malignancies.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Animais , Humanos , Recidiva Local de Neoplasia/patologia , Leucemia Mieloide Aguda/genética , Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Diferenciação Celular
10.
Blood ; 141(26): 3184-3198, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37001042

RESUMO

The bone marrow microenvironment supports leukocyte mobilization and differentiation and controls the development of leukemias, including acute myeloid leukemia (AML). Here, we found that the development of AML xenotransplants was suppressed in mice with osteoclasts tuberous sclerosis 1 (Tsc1) deletion. Tsc1-deficient osteoclasts released a high level of interleukin-34 (IL-34), which efficiently induced AML cell differentiation and prevented AML progression in various preclinical models. Conversely, AML development was accelerated in mice deficient in IL-34. Interestingly, IL-34 inhibited AML independent of its known receptors but bound directly to triggering receptor expressed on myeloid cells 2 (TREM2), a key hub of immune signals. TREM2-deficient AML cells and normal myeloid cells were resistant to IL-34 treatment. Mechanistically, IL-34-TREM2 binding rapidly phosphorylated Ras protein activator like 3 and inactivated extracellular signal-regulated protein kinase 1/2 signaling to prevent AML cell proliferation and stimulate differentiation. Furthermore, TREM2 was downregulated in patients with AML and associated with a poor prognosis. This study identified TREM2 as a novel receptor for IL-34, indicating a promising strategy for overcoming AML differentiation blockade in patients with AML.


Assuntos
Leucemia Mieloide Aguda , Animais , Camundongos , Medula Óssea/metabolismo , Proteínas de Transporte/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Microambiente Tumoral
11.
Cancer Gene Ther ; 30(7): 997-1006, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36932195

RESUMO

Epidermal growth factor receptor pathway substrate number 8 (EPS8) has been reported to be critical in mediating tumor progression. However, the molecular and biological consequences of EPS8 overexpression remain unclear. Here we evaluated whether EPS8 increased DNA damage repair in non-small-cell lung carcinoma (NSCLC) cells and the mechanism of EPS8-mediated DNA damage repair which influenced chemosensitivity. Serial studies of functional experiments revealed that EPS8 knockdown inhibited cell growth, induced cell-cycle arrest and increased cisplatin therapeutic effects on NSCLC. EPS8 was found to induce DNA damage repair via upregulation of phosphorylated-ATM and downregulation of the tumor suppressor p53 and G1 cell kinase inhibitor p21. Moreover, in conjunction with cisplatin, decreasing EPS8 protein levels further increased p53 protein level and inhibited ATM signaling. Transplanted tumor studies were also performed to demonstrate that EPS8 knockdown inhibited tumor growth and sensitized tumors to cisplatin treatment. In conclusion, we have described a novel molecular mechanism through which EPS8 is likely to be involved in cancer progression and chemoresistance via DNA damage repair, indicating that EPS8 expression may influence the response to chemotherapy. Therefore, targeting EPS8 may be a potential therapeutic approach for patients with NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteína Supressora de Tumor p53/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Dano ao DNA , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
12.
Biomed Pharmacother ; 154: 113566, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994820

RESUMO

To identify therapeutic targets in acute myeloid leukemia (AML), we conducted growth inhibition screens of 2040 small molecules from a library of FDA-approved drugs using a panel of 12 AML cell lines. Tegaserod maleate, a 5-hydroxytryptamine 4 receptor partial agonist, elicits strong anti-AML effects in vitro and in vivo by targeting transient receptor potential melastatin subtype 8 (TRPM8), which plays critical roles in several important processes. However, the role of TRPM8 remains incompletely described in AML, whose treatment is based mostly on antimitotic chemotherapy. Here, we report an unexpected role of TRPM8 in leukemogenesis. Strikingly, TRPM8 knockout inhibits AML cell survival/proliferation by promoting apoptosis. Mechanistically, TRPM8 exerts its oncogenic effect by regulating the ERK-CREB/c-Fos signaling axis. Hyperactivation of ERK signaling can be reversed by TRPM8 inhibition. Importantly, TRPM8 is overexpressed in AML patients, indicating that it is a new prognostic factor in AML. Collectively, our work demonstrates the anti-AML effects of tegaserod maleate via targeting TRPM8 and indicates that TRPM8 is a regulator of leukemogenesis with therapeutic potential in AML.


Assuntos
Leucemia Mieloide Aguda , Canais de Cátion TRPM , Apoptose , Carcinogênese , Proliferação de Células , Sobrevivência Celular , Humanos , Indóis , Leucemia Mieloide Aguda/metabolismo , Proteínas de Membrana/metabolismo
13.
Immunol Cell Biol ; 100(7): 507-528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578380

RESUMO

Leukemia and lymphoma-the most common hematological malignant diseases-are often accompanied by complications such as drug resistance, refractory diseases and relapse. Amino acids (AAs) are important energy sources for malignant cells. Tumor-mediated AA metabolism is associated with the immunosuppressive properties of the tumor microenvironment, thereby assisting malignant cells to evade immune surveillance. Targeting abnormal AA metabolism in the tumor microenvironment may be an effective therapeutic approach to address the therapeutic challenges of leukemia and lymphoma. Here, we review the effects of glutamine, arginine and tryptophan metabolism on tumorigenesis and immunomodulation, and define the differences between tumor cells and immune effector cells. We also comment on treatments targeting these AA metabolism pathways in lymphoma and leukemia and discuss how these treatments have profound adverse effects on tumor cells, but leave the immune cells unaffected or mildly affected.


Assuntos
Leucemia , Linfoma , Aminoácidos , Humanos , Imunomodulação , Leucemia/terapia , Linfoma/terapia , Microambiente Tumoral
14.
BMC Genom Data ; 23(1): 7, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35033016

RESUMO

BACKGROUND: Belonging to the protein arginine methyltransferase (PRMT) family, the enzyme encoded by coactivator associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of protein arginine residues, especially acts on histones and other chromatin related proteins, which is essential in regulating gene expression. Beyond its well-established involvement in the regulation of transcription, recent studies have revealed a novel role of CARM1 in tumorigenesis and development, but there is still a lack of systematic understanding of CARM1 in human cancers. An integrated analysis of CARM1 in pan-cancer may contribute to further explore its prognostic value and potential immunological function in tumor therapy. RESULTS: Based on systematic analysis of data in multiple databases, we firstly verified that CARM1 is highly expressed in most tumors compared with corresponding normal tissues, and is bound up with poor prognosis in some tumors. Subsequently, relevance between CARM1 expression level and tumor immune microenvironment is analyzed from the perspectives of tumor mutation burden, microsatellite instability, mismatch repair genes, methyltransferases genes, immune checkpoint genes and immune cells infiltration, indicating a potential relationship between CARM1 expression and tumor microenvironment. A gene enrichment analysis followed shortly, which implied that the role of CARM1 in tumor pathogenesis may be related to transcriptional imbalance and viral carcinogenesis. CONCLUSIONS: Our first comprehensive bioinformatics analysis provides a broad molecular perspective on the role of CARM1 in various tumors, highlights its value in clinical prognosis and potential association with tumor immune microenvironment, which may furnish an immune based antitumor strategy to provide a reference for more accurate and personalized immunotherapy in the future.


Assuntos
Neoplasias , Proteína-Arginina N-Metiltransferases , Biomarcadores Tumorais/genética , Histonas/metabolismo , Humanos , Neoplasias/diagnóstico , Prognóstico , Proteína-Arginina N-Metiltransferases/genética , Microambiente Tumoral/genética
15.
Biomark Res ; 9(1): 72, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34625124

RESUMO

Tumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. Increasing evidences suggest that potential mechanisms of macrophage-mediated tumor immune escape imply interpretation and breakthrough to bottleneck of current tumor immunotherapy. Therefore, it is pivotal to understand the interactions between macrophages and other immune cells and factors for enhancing existing anti-cancer treatments. In this review, we focus on the specific signaling pathways through which TAMs involve in tumor antigen recognition disorders, recruitment and function of immunosuppressive cells, secretion of immunosuppressive cytokines, crosstalk with immune checkpoints and formation of immune privileged sites. Furthermore, we summarize correlative pre-clinical and clinical studies to provide new ideas for immunotherapy. From our perspective, macrophage-targeted therapy is expected to be the next frontier of cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA